پایدارسازی دستگاه های کنترل غیرخطی با استفاده از قضیه زوبوف و شبکه های عصبی مصنوعی

Authors

اژدر سلیمان پور باکفایت

a soleymanpour bakefayat department of mathematical sciences, payame noor university, iranدانشگاه پیام نور، گروه ریاضی، ایران نادر دسترنج

n dastranj department of mathematical sciences, payame noor university, iranدانشگاه پیام نور، گروه ریاضی، ایران

abstract

قضیۀ زوبوف یکی از قضایایی است که برای پایداری یک دستگاه غیرخطی با دامنه ربایش معلوم شرایطی را   بیان می کند. از شبکه های عصبی استفاده کرده و با آن ها، تعدادی از توابع موجود در قضیۀ زوبوف را تقریب می زنیم، بدین ترتیب کنترل کنندۀ یک دستگاه کنترل غیرخطی، که به لحاظ ریاضی یافتن ضابطۀ کنترل آن آسان نیست، به دست می آید. در این تحقیق دو استراتژی مختلف را به کار می گیریم و نهایتاً تأثیر و قابلیت روش های مفروض، با مثال های عددی توضیح داده شده است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پایدارسازی سیستم های کنترل غیرخطی با استفاده از قضیه زوبوف و شبکه های عصبی مصنوعی

در این مقاله، ما یک دسته از سیستم های کنترل غیرخطی را توسط شبکه های عصبی مصنوعی و قضیه زوبوف پایدار می کنیم. قضیه زوبوف یکی از قضایایی است که شرایطی را برای پایداری یک سیستم غیرخطی با ناحیه جذب معلوم، بیان می کند. از شبکه های عصبی استفاده کرده و توسط آنها، تعدادی از توابع موجود در قضیه زوبوف را تقریب می زنیم بدین ترتیب کنترل کننده یک سیستم کنترلی غیرخطی که به لحاظ ریاضی یافتن ضابطه آن آسان نیست...

full text

پایدارسازی دسته ای از سیستم های کنترل غیرخطی با استفاده از شبکه های عصبی مصنوعی

هدف این رساله، پایدارسازی سیستم های کنترل غیرخطی از طریق شبکه های عصبی است. این کار در سیستم های غیرخطی گسسته و پیوسته انجام شده است. در سیستم های گسسته نسبت به پیوسته عملکرد شبکه های عصبی بهتر بود. نوع شبکه های بکار رفته شده غالباً از نوع چند لایه است که در آن قوانین یادگیری متفاوتی بکار رفته است. در حالت کلی دو نوع یادگیری بنام برخط و نه برخط وجود دارد، هر دو حالت را در سیستم ها انجام داده و پ...

15 صفحه اول

پایدارسازی سیستم های کنترل غیرخطی با استفاده از شبکه های عصبی مصنوعی

هدف این رساله، پایدارسازی سیستم های کنترل غیرخطی از طریق شبکه های عصبی است. این کار در سیستم های غیرخطی گسسته و نیز پیوسته انجام شده است. در سیستم های گسسته نسبت به حالت پیوسته عملکرد شبکه های عصبی بهتر بود. نوع شبکه های بکار رفته شده غالباً چند لایه است که در آن، قوانین یادگیری متفاوتی بکار گرفته شده است. دو نوع یادگیری در دو حالت برخط و نه برخط انجام شده است، هر دو حالت را انجام داده و به پاید...

پیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی

یکی از مهم‌ترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپرده‌های بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاین‌رو مدیران بانک‌ها علاقه‌مند هستند بدانند که میزان کل سپرده‌های بانک در زمان معینی در آینده چقدر خواهد بود. پیش‌بینی میزان سپرده‌ها، تغییر و نوسان این سپرده­ها می‌تواند در امر برنامه­ریزی و تصمیم­گیری به بانک‌ها کمک نماید....

full text

ارزیابی یک دستگاه هوشمند برای جداسازی پسته با استفاده از شبکه های عصبی مصنوعی (ANN) و تبدیل موجک انعکاس صدا

دستگاه‌هایی که برای جداسازی پسته مورد استفاده قرار می‌گیرند حجیم بوده، انرژی زیادی مصرف می‌نمایند و چندان دقیق نیستند. در این پژوهش یک دستگاه هوشمند مبتنی بر انعکاس صدا طراحی و برای جداسازی پسته پوک از پسته‌های مغزدار مورد استفاده قرار گرفت. برای ارزیابی دستگاه، پسته به طور جداگانه با فواصل 1، 3 یا 5 سانتی‌متر بر روی یک نوار نقاله قرار داده شدند تا از دو ارتفاع 25 و 35 سانتی‌متری بر روی یک صف...

full text

تشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی

وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را به‌صورت تغییر در میزان الکترون، چگالی یون‌ها، میدان‌های الکتریکی و مغناطیسی این لایه نشان می‌دهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایه‌های لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید به‌عنوان پیش‌نشانگر شناخته می‌شود...

full text

My Resources

Save resource for easier access later


Journal title:
پژوهش های ریاضی

جلد ۱، شماره ۱، صفحات ۵۱-۶۲

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023